A survey on reverse Carleson measures
نویسندگان
چکیده
This is a survey on reverse Carleson measures for various Hilbert spaces of analytic functions. These spaces include the Hardy, Bergman, certain harmonically weighted Dirichlet, Paley-Wiener, Fock, model (backward shift invariant), and de Branges-Rovnyak spaces. The reverse Carleson measure for backward shift invariant subspaces in the non-Hilbert situation is new.
منابع مشابه
New results on p-Carleson measures and some related measures in the unit disk
We provide some new sharp embeddings for p-Carleson measures and some related measures in the unit disk of the complex plane.
متن کاملDIRECT AND REVERSE CARLESON MEASURES FOR H (b) SPACES
In this paper we discuss direct and reverse Carleson measures for the de Branges-Rovnyak spaces H (b), mainly when b is a non-extreme point of the unit ball of H.
متن کاملReverse Carleson measures in Hardy spaces
We give a necessary and sufficient condition for a measure μ in the closed unit disk to be a reverse Carleson measure for Hardy spaces. This extends a previous result of Lefèvre, Li, Queffélec and Rodrı́guez-Piazza [LLQR]. We also provide a simple example showing that the analogue for the Paley-Wiener space does not hold. As it turns out the analogue never holds in any model space.
متن کاملReverse Carleson embeddings for model spaces
The classical embedding theorem of Carleson deals with finite positive Borel measures μ on the closed unit disk for which there exists a positive constant c such that ‖f‖L2(μ) ≤ c‖f‖H2 for all f ∈ H, the Hardy space of the unit disk. Lefèvre et al. examined measures μ for which there exists a positive constant c such that ‖f‖L2(μ) ≥ c‖f‖H2 for all f ∈ H. The first type of inequality above was e...
متن کاملCarleson Measures on Dirichlet-type Spaces
We show that a maximal inequality holds for the non-tangential maximal operator on Dirichlet spaces with harmonic weights on the open unit disc. We then investigate two notions of Carleson measures on these spaces and use the maximal inequality to give characterizations of the Carleson measures in terms of an associated capacity.
متن کامل